EEJournal

editor's blog
Subscribe Now

Driving ADAS

ARM reckons that the computational power in your car is set to increase by 100X in the next ten years, mainly through the growth of ADAS (Advanced Driver Assistance Systems). These systems use sensors of many kinds to gather information about the environment, process it, and present it to the driver. While at one level all that ADAS is doing is what a reasonably alert driver does- notices speed limit signs, the position of other vehicles etc, at the next level it gets more exciting. In poor light conditions ADAS can use visual light and RADAR sensors to see better, will use image processing to decide if the dimly seen figure is a pedestrian, a cyclist or a street light and then calculate likely paths, if it is not a street light.

Just that one example will use a ton of processing power and, as the information is safety-critical, the systems to do this will have to be developed accordingly. This, in the automotive environment, means that they will need to conform to ISO 26262, which requires a mass of documentation about the components in use and the software running in the systems. Earlier this year ARM announced a package of safety documentation and support for the Cortex-R5, a core that a number of chip companies are using in processors for automotive applications.

他们现在已经延长了项目皮层-A family, with packages available for the Cortex-A53, the Cortex-A57 and the big beast of the ARM family launched earlier this year, the Cortex-A72.

SoC implementers will get help with the development and safety assessment of SoC designs to help meet the functional safety standards such as ISO 26262 and IEC 61508 through a documentation package. The package includes a safety manual, a FMEA(Failure Modes and Effects Analysis) report and a development interface report. This should shorten significantly the time and effort needed for a certification programme within an SoC company.

ARM intends to provide the same package for other processors once they have waded through the huge amount of work that providing the package involves.

Leave a Reply

featured blogs
Mar 31, 2023
Learn how (and why) the semiconductor industry is moving towards chiplet-enabled multi-die systems in our research piece in MIT's Technology Review Insights. The post An Industry-Wide Look at the Move Toward Multi-Die Systems appeared first on New Horizons for Chip Design....
Mar 31, 2023
The Verisium Debug platform is optimized for scalability, supporting debugging of simulation runs and emulation, where support for loading large source files and handling huge amounts of probe data is a must. Join this free Cadence Training Webinar to learn how to automate yo...
Mar 30, 2023
Are you in desperate need of a program manager to instigate a new project or rescue an existing project that is spiraling out of control?...

featured video

First CXL 2.0 IP Interoperability Demo with Compliance Tests

Sponsored bySynopsys

In this video, Sr. R&D Engineer Rehan Iqbal, will guide you through Synopsys CXL IP passing compliance tests and demonstrating our seamless interoperability with Teladyne LeCroy Z516 Exerciser.This first-of-its-kind interoperability demo is a testament to Synopsys' commitment to delivering reliable IP solutions.

Learn more about Synopsys CXL here

featured chalk talk

The Next Generation of Switching Regulator
Sponsored byMouser ElectronicsandRECOM
Power modules can bring a variety of benefits to electronic system design including reduced board space, shorter time to market and easier sourcing of materials. In this episode of Chalk Talk, Amelia Dalton and Louis Bouche from RECOM discuss the benefits of RECOM’s switching regulators, the details of their advanced 3D power packaging and how you can leverage RECOM’s expertise with your next design.
Jan 9, 2023
11,530 views
Baidu